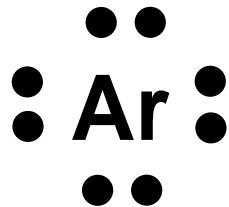
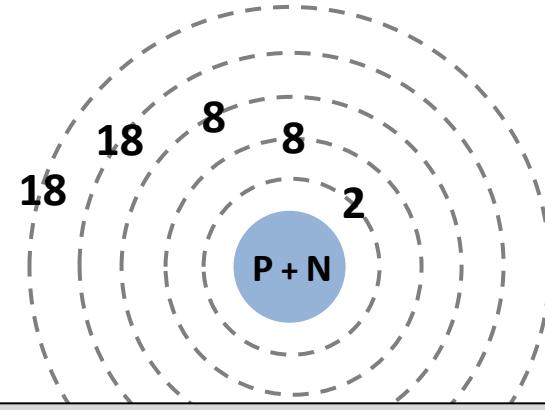


Name: \_\_\_\_\_


Class: \_\_\_\_\_

Date: \_\_\_\_\_




# Lewis Dot Structures

Complete Lewis Dot Structures for the following eight elements. Remember, there are only two parts to a Lewis Dot Structure: the element symbol (ex. "Ar" for Argon) and the number of electrons in the valence shell (ex. eight).



A correct Lewis Dot Diagram for Argon.



How do we know Argon has eight electrons in its outer shell? Recall what we learned about how much each shell can hold...

|    |    |    |   |    |    |
|----|----|----|---|----|----|
| Be | O  | Ne | B | Mg | S  |
| Na | Cl | H  | P | Li | C  |
| He | Ar | Si | N | F  | Al |

Now sort the 18 Lewis Dot Structures (from the front side) into the blank Periodic Table below.

|  |  |                              |  |  |  |  |  |  |
|--|--|------------------------------|--|--|--|--|--|--|
|  |  |                              |  |  |  |  |  |  |
|  |  |                              |  |  |  |  |  |  |
|  |  |                              |  |  |  |  |  |  |
|  |  | <b>TRANSITION<br/>METALS</b> |  |  |  |  |  |  |

1. What do you notice about the Dot Diagrams and how they relate to where elements are located in the periodic table?
2. Do you think this is a coincidence?
3. What changes about the pattern after you get into the 4<sup>th</sup> shell (which holds up to 18 electrons)?